A direct method for trajectory optimization of rigid bodies through contact
نویسندگان
چکیده
Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning of rigid body systems that contact their environment through inelastic impacts and Coulomb friction. This method eliminates the requirement for a priori mode ordering. Motivated by the formulation of multi-contact dynamics as a Linear Complementarity Problem (LCP) for forward simulation, the proposed algorithm poses the optimization problem as a Mathematical Program with Complementarity Constraints (MPCC). We leverage Sequential Quadratic Programming (SQP) to naturally resolve contact constraint forces while simultaneously optimizing a trajectory that satisfies the complementarity constraints. The method scales well to high dimensional systems with large numbers of possible modes. We demonstrate the approach on four increasingly complex systems: rotating a pinned object with a finger, simple grasping and manipulation, planar walking with the Spring Flamingo robot, and high speed bipedal running on the FastRunner platform.
منابع مشابه
Corrigendum: A direct method for trajectory optimization of rigid bodies
Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path...
متن کاملVariational Contact-Implicit Trajectory Optimization
We present a formulation of rigid body dynamics with frictional contact that leverages ideas from discrete mechanics to derive time-stepping schemes with any desired order of integration accuracy. By utilizing the new time-stepping methods as dynamics constraints in a direct trajectory optimization scheme, we are able to perform contact-implicit trajectory optimization with accuracy equal to tr...
متن کاملDirect Trajectory Optimization of Rigid Body Dynamical Systems through Contact
Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Most state-of-the-art techniques treat the discontinuous dynamics of contact as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning through contact that eliminates the r...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملTrajectory Optimization for a Multistage Launch Vehicle Using Nonlinear Programming
This work is an example of application of nonlinear programming to a problem of three-dimensional trajectory optimization for multistage launch vehicles for geostationary orbit missions. The main objective is to minimize fuel consumption or equivalently to maximize the payload. The launch vehicle considered here, Europa-II, consists of 5 thrust phases and 2 coast phases. Major parameters of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 33 شماره
صفحات -
تاریخ انتشار 2014